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The -construction of an approximate model of a type of heat ex-
changer described by partial differential equations is discussed, A
form of transfer function for this approximate model is proposed to-
gether with a calculation method and a block diagram for analog
simulation purposes.

The approximate description of the trangient pro-
cesses in heat exchangers with distributed parameters
is important in the analysis of the control process.
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Fig. 1. Schematic of heat
exchanger: 1)tube, 2)flow,
3) insulation.

The solutions of the systems of partial differential
equations describing the heat-exchange process are
quite complicated {1, 2]. Therefore the transfer func-
tions cannot be set up directly on analog computers.

The purpose of this paper is to examine an approx-
imation of the transfer function for an insulated tube
(Fig. 1) through which a heat transfer agent flows at
constant velocity.

We will find the approximation of the transfer func-
tion in the form 12}

W (p) = 1, (0)/t {p),

where t,(p) is the Laplace transform for the inlet tem-
perature t; of the heat transfer agent, and t,(p) is the
transform for the outlet temperature t,.

In deriving the equations of dynamics the following
assumptions are made:

1. The wall of the tube is treated as a lumped ther-
mal capacitance.

2. The temperature of the wall surface in contact
with the heat transfer agent is taken equal to some
mean temperature.

3. Heat conduction along the axis of the tube is not
taken into account either for the wall or for the flow.

4. The thermal insulation of the tube is assumed to
be ideal.

“in [3].

Using the same terminology as in [2], we write the
heat balance equations for an element dx of the heat
transfer agent and the wall:

0t (x, 1) ot (x, ©)
dt +e ox
do(x, )
dv

kl [U (xv T) - t(xv T)]’

— Ryt (x, T)—0(x, D),

where k; = o, L;/Cy;5; is the constant coefficient of
the heat balance equation for the heat transfer agent;
ky = 0L;/Cyy,S; is the constant coefficient of the heat
balance equation for the tube wall.

The initial conditions are taken as the zero condl—
tions. The boundary condition is

t(0, ©) =1 (1)

Several authors [1, 2] have solved this system of
differential equations using the Laplace transforma-
tion.

The transfer function of the outlet temperature as
a function of the inlet temperature for an insulated
tube without allowance for heat conduction in the walls
may be written as follows:

W (p) = exp(— p o) exp(— o)eXP( 7 —I—Tp)
where Ty = I/w is the transport lag; T = 1/k the time
constant of the tube, which does not depend on the
tube length; and by = Ik,/w the "dimensionless length"—
a quantity proportional to the length of the tube.

The amplitude-phase response for the given system
has the following form:

W (jw) = a, exp(—j @),
where '

=exp|—2—— —b, |,
(2] p(rl—}—Tz(nz 0)
¢ = —a)ro——bowT/(i + 0*T?).

Figure 2 shows the amplitude-frequency and phase-
frequency responses of this system for several values
of by; in this case 7y = 0 (the additional phase shift due
to this lag is 7yw), and the frequency is normalized to
the time constant of the tube T.

The transient responses to stepwise variation of
the inlet temperature for several values of by, shown
in Fig. 3, were constructed by the method described
(The time axis is normalized to the time con-
stant T.)
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Fig. 2. Comparison of amplitude-frequency and phase-frequency

responses for the heat transfer process in an insulated tube and

its approximate model (1, = 0): 1,2,3,4 for by = 0.5, 1.0, 1.5

and 2.0; solid line is the exact solution; dashed line is the ap-
proximate solution,
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Fig. 3. Comparison of transient responses
to stepwise variation of the inlet tempera-
ture for the heat transfer process in an in-
sulated tube and its approximate model

(13 = (1 — T)/T). Solid line is the exact
solution; dashed line is the approximate

solution; 1-4, see Fig. 2,
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It is interesting to note that the shape of the trans~
ient response curve does not depend on the liquid
transport time, although it does depend on the flow
velocity.
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Fig. 4. Analog circuit for solving transfer
function of the element determined by the
heat transfer process.

In some approximation the actual physical process
of heat transfer in an insulated tube can be represent-
ed as follows: following an abrupt increase in the
temperature of the liquid entering at one end of the
‘tube the temperature of the liquid at the tube outlet
does not rise during the time required to transport the
liquid along the length of the tube. As soon as trans-
portation is complete, hot liquid, whose temperature
has been reduced by the cold tube, flows out. Then, as
each section of the tube is heated, the outlet temper-
ature of the flow progressively rises to the steady
state.

Thus, as may be seen from the transfer function
itself and the description of the process, the transfer
function W(p) may be represented as a pure delay ele-
ment, determined by the transport lag of the heat
transfer agent, connected in series with an element
determined by the heat transfer process.

We will consider the heat transfer process in this
system in detail, neglecting the temperature gradient
of the tube in the direction of flow, i.e., lumping the
thermal capacitance of the tube.

On the basis of our approximation of the process
the heat balance equation for the heat transfer agent
may be written as follows:

A

by
= —(v—1).
dx I ( )

Integrating this equation and considering that v does
not depend on the coordinate x, we find the flow temp-
erature at the tube outlet

s = v+ ({, —v)exp(—by).

The heat balance equation for the wall is
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Solving this system of equations, and eliminating v,
we obtain the transfer function of the heat transfer
process in the following form:

W1 (p) = [exp (— by) cTp + 1}/(cTp + 1),
where
¢ = by/[1 —exp(— by)l-

The analog circuit for solving the given transfer func-
tion is shown in Fig. 4. Inorder to set itup, itisneces-
sary to know the values of the quantities T, by, and c.

Comparison of the characteristics presented in Figs.
2 and 3 shows quite good convergence of the exact and
approximate transfer functions at values of by < 2, In
order to characterize the heat transfer system in an
insulated tube with distributed parameters, in which
the "dimensionless length" b, > 2, it is necessary
to divide the part of the tube considered into individual
sections, so that by, <2, and calculate from the
given values of by and T for each section approxi-
mate transfer functions of the type considered, which
are then combined.

Thus, the method described permits the operational
approximation of transfer functions of a similar type,
it being sufficient to determine the values of three
quantities: the time constant of the tube T, the "dimen-
sionless length" by, and the coefficient of the time con-
stant ¢, which can easily be found from the physical
and design parameters of the process.

NOTATION

t(x, 1) is the temperature of the heat transfer agent,
°C; v({x, 7) is the wall temperature, °C; w is the flow
velocity, m/sec; x is the coordinate of length, m; T
is the variable time, sec; ky, k, are the constant co-
efficients of the heat balance equations for the flow
and the wall, respectively, 1/sec; «, is the heat trans-
fer coefficient, kcal/m’ - sec - °C; L, is the inside
diameter of tube, m; C, is the specific heat capacity
of flow, kcal/kg * °C; v, is the specific weight of flow,
kg/m®; S, is the internal cross section of tube, m?;

C, is the specific heat capacity of the wall, kcal/kg

* °C; v, is the specific weight of the wall material,
kg/m’; §, is the cross section of the tube wall, m?;

79 is the transport lag, sec; [ is the length of section
of tube, m; T is the time constant of tube, sec; b is
the "dimensionless length"; ¢ is the coefficient of the tube
time constant; p is the Laplace transformation with res-
pectto the variable 7; w is the cyclicfrequency. 1/sec.
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